ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Conrad V. Chester, Rowena O. Chester
Nuclear Technology | Volume 31 | Number 3 | December 1976 | Pages 326-338
Technical Paper | Reactor Siting | doi.org/10.13182/NT76-A31669
Articles are hosted by Taylor and Francis Online.
The implications of a nuclear power industry in a large nuclear war in the year 2000 were examined from the standpoints of (a) target value of reactors, (b) consequences for nearby population, and (c) long-term consequences of adding reactor fission products to the fallout from the weapons. The primary conclusion is that fallout augmentation by targeting nuclear reactors is of marginal military or strategic value. With the anticipated missile guidance accuracy by the year 2000, it mill be feasible to excavate all reactors and high-level liquid waste tanks, and add those fission products to the fallout. However, the augmented fallout is not intense enough for long-term interdiction of strategic amounts of transportation or food production capacity under probable emergency standards for radiation exposure. On the basis of contribution to gross national product, 2400-MW(e) nuclear or fossil-fueled power plants are competitive targets compared to the rest of the economy for 1-Mton warheads, and isolated 1000-MW(e) plants are competitive targets for 125-kt warheads, given the estimated size of the USSR strategic force. If the U.S. adopts a USSR-style civil defense plan, casualties from direct weapon effects on reactors will be largely avoided, and the principal effect of fallout augmentation over that caused by the attack alone would be doubling the 90Sr contamination on essential grain-growing areas. In the population near nuclear power reactors, fatalities from the release of radioactive aerosols from damaged reactors can be essentially eliminated by the use of expedient respiratory protection by the population downwind of the damaged reactor. The potential dose-commitment from the attack alone is estimated to cause in the U.S. an increase of 30% in the cancer death rate. However, this increase in death rate would not show up for more than a decade after the attack. Fallout augmentation from cratering reactors and high-level waste tanks could result in doubling the delayed cancer death rate if (a) the USSR is willing to spend an additional 400 to 600 warheads to produce this effect, and (b) fission product wastes are retained in surface or near-surface storage for 10 y after reprocessing.