ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Victor Teschendorff, Adly Barsoum Wahba
Nuclear Technology | Volume 31 | Number 3 | December 1976 | Pages 297-305
Technical Paper | Reactor | doi.org/10.13182/NT76-A31666
Articles are hosted by Taylor and Francis Online.
Thermal interaction between molten fuel and coolant plays an important role in nuclear reactor safety. A molten fuel-coolant interaction model for water was developed and tested by calculating the propagation of pressure waves observed in some of the in-pile SPERT experiments. Pressure buildup in the interaction zone results from a high heat flux to the coolant, assuming direct contact for the initial phase. Both interaction and acceleration zones are modeled by the same set of equations that accounts for compressibility and inertia of the coolant. Phase changes of the water are controlled by a finite mass transfer rate. Calculations with this one-dimensional model BLAFCI show that particle size distribution and fragmentation time are the most sensitive parameters. Calculated peak pressures and some of the pressure time curves up to 10 msec agree well with the experimental data.