ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Victor Teschendorff, Adly Barsoum Wahba
Nuclear Technology | Volume 31 | Number 3 | December 1976 | Pages 297-305
Technical Paper | Reactor | doi.org/10.13182/NT76-A31666
Articles are hosted by Taylor and Francis Online.
Thermal interaction between molten fuel and coolant plays an important role in nuclear reactor safety. A molten fuel-coolant interaction model for water was developed and tested by calculating the propagation of pressure waves observed in some of the in-pile SPERT experiments. Pressure buildup in the interaction zone results from a high heat flux to the coolant, assuming direct contact for the initial phase. Both interaction and acceleration zones are modeled by the same set of equations that accounts for compressibility and inertia of the coolant. Phase changes of the water are controlled by a finite mass transfer rate. Calculations with this one-dimensional model BLAFCI show that particle size distribution and fragmentation time are the most sensitive parameters. Calculated peak pressures and some of the pressure time curves up to 10 msec agree well with the experimental data.