ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Yoshiaki Oka, Hiroaki Wakabayashi, Shigehiro An, Ikunori Suzuki
Nuclear Technology | Volume 31 | Number 3 | December 1976 | Pages 287-296
Technical Paper | Reactor | doi.org/10.13182/NT76-A31665
Articles are hosted by Taylor and Francis Online.
Neutron streaming through the holes penetrating the grid-plate shield of a prototype liquid-metal fast breeder reactor was experimentally examined. The mockups of the grid-plate shield were made of iron and aluminum. Experiments were conducted in the vertical column of YAYOI, the fast-neutron source reactor at the University of Tokyo. A 3He spectrometer was employed to measure the transmitted neutron spectrum, while rhodium and indium threshold foils were used to determine the integral flux above specific energies and their spatial distributions in the form of reaction rates. The streaming factor for usual small bent holes is 1.28 ± 0.04 for the integral neutron flux above 0.1 MeV and 1.30 ± 0.12 for the reaction rate of the indium foil. Use was made of the one- and two-dimensional neutron transport codes ANISN and TWOTRAN for evaluation by computation. The reaction rates calculated by an infinite slab model with the ANISN code agree well with the experiments when normalized at the source point where neutrons are incident on the grid-plate shield.