ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Finis H. Southworth, Hugh D. Campbell
Nuclear Technology | Volume 30 | Number 3 | September 1976 | Pages 434-436
Technical Note | Uranium Resource / Reactor | doi.org/10.13182/NT76-A31656
Articles are hosted by Taylor and Francis Online.
Thermonuclear plasmas with a sufficient density-radius product, ρR, will degrade the energy spectrum of neutrons released in the plasma. This property may alleviate neutron damage, transmutation, and transient power loading in the first wall of laser-controlled thermonuclear reactors. In addition, degraded neutron energy spectra might be used as a diagnostic of compression in latter-stage laser fusion experiments. As an example of the degradation in the neutron spectrum, the energy spectrum of neutrons resulting from a thermonuclear deuterium-tritium plasma with ρR = 2 g/cm2 when using a simple model shows that ∼2.5 MeV of the neutron’s original 14.1 MeV is deposited in the pellet. As a figure of merit for the reduction of threshold reactions in the walls, the same model shows that ∼27%> of the neutrons are below 10 MeV in energy.