ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today unveiled 10 companies racing to bring test reactors online by next year to meet Trump's deadline of next Independance Day, leveraging a new DOE pathway that allows reactor authorization outside national labs. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
A. De Volpi, R. R. Stewart, J. P. Regis, G. S. Stanford, E. A. Rhodes
Nuclear Technology | Volume 30 | Number 3 | September 1976 | Pages 398-421
Technical Paper | Uranium Resource / Instrument | doi.org/10.13182/NT76-A31654
Articles are hosted by Taylor and Francis Online.
The fast-neutron hodoscope at the Transient Reactor Test Facility is designed for the determination of fuel motion during the course of brief (0.1- to 30-sec) power transients. During the course of a transient test, data must be recorded from each of 334 hodoscope channels at count rates up to 2 million/sec each, down to millisecond time intervals. This is accomplished in a relatively reliable and inexpensive manner by displaying counts from each detector sequentially in binary code on a lamp panel, which is photographed by a high-speed framing camera, producing a film record of the transient test. After chemical development, the film is examined by a computer-controlled flying-spot scanner, and the position and density of candidate lamp images are recorded on magnetic tape. Through further computer processing, these images are sorted and decoded, and the count rate is recovered for each detector at each instant of collection time. A cathode-ray tube and a plotter, both computer controlled, are used to recreate and analyze the fuel motion history of the experiment. Analysis is directed toward fuel distortion or expansion prior to clad failure, slumping, dispersion, amount and rates of movement, post-scram relocation, and ultimate disposition of fuel.