ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Walter L. Weaver III, Marvin E. Wyman, Barclay G. Jones
Nuclear Technology | Volume 30 | Number 3 | September 1976 | Pages 350-360
Technical Paper | Uranium Resource / Fuel | doi.org/10.13182/NT76-A31649
Articles are hosted by Taylor and Francis Online.
The neutron spectrum in the Illinois Advanced TRIGA Reactor was measured by a crystal spectrometer utilizing an LiF(1, 1, 1) crystal monochromator whose reflectivity was determined experimentally. The fission heat source distribution in a fuel element was also determined as a function of the fuel element temperature. These two measurements were used to investigate the effects of fuel element temperature and the local core loading on the thermal diffusion length in a fuel element. Changes in the thermal diffusion lengths during a reactor pulse underlie the proposed temperature feedback mechanism for the ZrH fuel material. The results of the measurements confirm, in party this proposed temperature feedback mechanism.