ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
T. W. Kerlin, E.M. Katz, J. G. Thakkar, J. E. Strange
Nuclear Technology | Volume 30 | Number 3 | September 1976 | Pages 299-316
Technical Paper | Uranium Resource / Reactor | doi.org/10.13182/NT76-A31645
Articles are hosted by Taylor and Francis Online.
A mathematical model for predicting the dynamic response of the H. B. Robinson pressurized water reactor plant was formulated and compared with results from measurements made during full-power operation of the plant. The model was based on the basic conservation laws for neutrons, mass, and energy; design data from the safety analysis report were used to evaluate the necessary coefficients. The model included representations for point kinetics, core heat transfer, piping, pressurizer, and the steam generator. The experiment involved perturbations in control rod position and main steam valve opening. Periodic binary input signals and step inputs were used. Theoretical and experimental frequency responses were obtained from the model and the test data. The comparison showed that the model was capable of good predictions for reactivity perturbations and fair predictions for steam valve perturbations. A method was also demonstrated for using the test data for at-power determination of the differential control rod worth.