ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Zdeněk P. Bažant
Nuclear Technology | Volume 30 | Number 3 | September 1976 | Pages 256-260
Technical Paper | Uranium Resource / Reactor | doi.org/10.13182/NT76-A31643
Articles are hosted by Taylor and Francis Online.
An attempt has been made to explain the advantages of the behavior of prestressed concrete reactor vessels in a simple, brief, and qualitative form. In contrast to the property of spontaneous propagation of brittle fracture in massive steel plates, the failure of one prestressing wire or tendon does not propagate into the adjacent wires or tendons. The pressure-deflection curve does not end by a sudden failure, but the decrease of slope on approach to failure is gradual and even after formation of through cracks the vessel would close if depressurized. The energy absorption capability in post-elastic deformation is much higher than that of a steel vessel which could fail by brittle fracture. A weak part is the top closure slab, but if it is designed sufficiently thick to assure that a separation of a conical segment does not create a hole through the slab, and if much higher safety factors are used than those for the barrel sections, a very favorable failure behavior is assured. Comparison of the behavior of concrete and steel vessels in accidental exposure to high temperature and the role of moisture in concrete deserve further investigation.