ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. H. Horton, E. L. Albenesius
Nuclear Technology | Volume 30 | Number 1 | July 1976 | Pages 86-88
Technical Note | Radioactive Waste | doi.org/10.13182/NT76-A31627
Articles are hosted by Taylor and Francis Online.
A series of simple laboratory experiments was conducted to test the feasibility of separation of plutonium-contaminated soil into plutonium-rich and depleted fractions. The purpose of the separation is to reduce the costs of managing plutonium-contaminated soil by separating a large fraction of the soil that can be disposed of as noncontaminated soil. Water-scrubbing (agitation) and washing of a sample of soil from the Savannah River Plant burial ground separated out a clay-silt fraction containing ∼95% of the plutonium, but comprising only one-third of the total soil; the remaining two-thirds of the soil was a sand that contained only ∼5% of the total plutonium. The technique appears to be adaptable to commercial sand scrubbing and classifying equipment, and should be generally applicable to soils of high quartz sand content such as the clayey sands typical of the coastal plain of the southeastern United States, but verification with other soils will require similar laboratory tests.