ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. H. Horton, E. L. Albenesius
Nuclear Technology | Volume 30 | Number 1 | July 1976 | Pages 86-88
Technical Note | Radioactive Waste | doi.org/10.13182/NT76-A31627
Articles are hosted by Taylor and Francis Online.
A series of simple laboratory experiments was conducted to test the feasibility of separation of plutonium-contaminated soil into plutonium-rich and depleted fractions. The purpose of the separation is to reduce the costs of managing plutonium-contaminated soil by separating a large fraction of the soil that can be disposed of as noncontaminated soil. Water-scrubbing (agitation) and washing of a sample of soil from the Savannah River Plant burial ground separated out a clay-silt fraction containing ∼95% of the plutonium, but comprising only one-third of the total soil; the remaining two-thirds of the soil was a sand that contained only ∼5% of the total plutonium. The technique appears to be adaptable to commercial sand scrubbing and classifying equipment, and should be generally applicable to soils of high quartz sand content such as the clayey sands typical of the coastal plain of the southeastern United States, but verification with other soils will require similar laboratory tests.