ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Rajesh K. Ahluwalia, Thanh Q. Hua, Howard K. Geyer
Nuclear Technology | Volume 133 | Number 1 | January 2001 | Pages 103-118
Technical Paper | Reprocessing | doi.org/10.13182/NT01-A3162
Articles are hosted by Taylor and Francis Online.
During electrorefining of irradiated, binary U-Zr Experimental Breeder Reactor II fuel, a portion of zirconium is found to dissolve along with uranium. It accumulates in the cadmium pool both as dissolved zirconium and as a zirconium-cadmium intermetallic precipitate. Two electrochemical methods of removing zirconium from the electrorefiner have been evaluated. The first is a three-step method consisting of chemical oxidation of zirconium by CdCl2 addition, depletion of zirconium from the cadmium pool by electrotransport, and drawdown of zirconium from the LiCl-KCl eutectic salt by using a different electrorefiner configuration. A transport model is employed to determine the cell operating conditions for growing pure zirconium deposits and the throughput rate. The second method eliminates the chemical oxidation step and permits codeposition of uranium and zirconium onto the solid cathode. The transport model is used to assess the level of uranium impurity in the cathode product; an additional step is proposed to reoxidize uranium in the deposit. The two methods are compared from the standpoints of throughput, deposit composition, deposit adherence to a solid cathode mandrel, and the underlying uncertainties. A brief review is given of the related past laboratory work on removal of zirconium from the electrorefiner.