ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Douglas C. Hunt, Deanne Dickinson
Nuclear Technology | Volume 30 | Number 2 | August 1976 | Pages 190-214
Technical Paper | Criticality Array Data and Calculational Method / Chemical Processing | doi.org/10.13182/NT76-A31615
Articles are hosted by Taylor and Francis Online.
The , albedo, interaction potential, weighted interaction Oak Ridge Gaseous Diffusion Plant solid-angle, s/v surface density, fraction critical surface density, and equilateral hyperbola methods are compared by attempting to apply them to 14 different example arrays. The example arrays are distinguished by the type of fissile material in the array units and by the number of units in each array. Arrays with units of Pu(95) metal, U(93) metal, damp U(93)O2, dry Pu(95)O2, U(93)O2(NO3)2 solution, Pu(95)(NO3)4 solution, or U(5)O2F2 solution are considered. It is concluded that if the user has access to a Monte Carlo code such as KENO, he is better off using it than any of the other models for criticality evaluations of specific problems. The remainder of the models are most useful in establishing possible designs for a fissile storage or processing facility. The albedo method is found to be the preferred solid-angle technique, while the s/v surface density method and the method are the most comprehensive and useful of the semiempirical techniques. The s/v method is easier to apply and covers more possible contingencies (e.g., array flooding or persons in arrays), while the method is more difficult to use but has added flexibility, broader applicability, and yields more analytical scaling relations between array parameters.