ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Douglas C. Hunt
Nuclear Technology | Volume 30 | Number 2 | August 1976 | Pages 138-165
Technical Paper | Criticality Array Data and Calculational Method / Chemical Processing | doi.org/10.13182/NT76-A31613
Articles are hosted by Taylor and Francis Online.
The methods commonly used in this country to evaluate the criticality safety of fissile material arrays include density analog , surface density, equilateral hyperbola, albedo, and solid-angle techniques. These can be divided into array unit interaction and semiempirical methods. The albedo and solid-angle techniques fall into the former class; the rest fall into the latter class. A study reveals that interaction methods are useful in treating arrays of arbitrary mesh patterns (e.g., triangular or hexagonal) having only a few units, while the semiempirical techniques are more applicable to arrays with a large number of units. The density analog and surface density approaches are easy to apply but typically require more auxiliary calculations, while other methods are more difficult to use, but more broadly applicable. None of the methods satisfactorily handle nonuniformly spaced arrays, arrays with arbitrary amounts of internal moderator, or “clumped” arrays, i.e., arrays of arrays. Most of the methods have some provision for treating mixed arrays, but these provisions often do not apply to arrays of arbitrarily arranged fast (e.g., metal) and slow (e.g., solution) units.