ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Douglas C. Hunt
Nuclear Technology | Volume 30 | Number 2 | August 1976 | Pages 138-165
Technical Paper | Criticality Array Data and Calculational Method / Chemical Processing | doi.org/10.13182/NT76-A31613
Articles are hosted by Taylor and Francis Online.
The methods commonly used in this country to evaluate the criticality safety of fissile material arrays include density analog , surface density, equilateral hyperbola, albedo, and solid-angle techniques. These can be divided into array unit interaction and semiempirical methods. The albedo and solid-angle techniques fall into the former class; the rest fall into the latter class. A study reveals that interaction methods are useful in treating arrays of arbitrary mesh patterns (e.g., triangular or hexagonal) having only a few units, while the semiempirical techniques are more applicable to arrays with a large number of units. The density analog and surface density approaches are easy to apply but typically require more auxiliary calculations, while other methods are more difficult to use, but more broadly applicable. None of the methods satisfactorily handle nonuniformly spaced arrays, arrays with arbitrary amounts of internal moderator, or “clumped” arrays, i.e., arrays of arrays. Most of the methods have some provision for treating mixed arrays, but these provisions often do not apply to arrays of arbitrarily arranged fast (e.g., metal) and slow (e.g., solution) units.