ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
C. L. Schuske, Hugh C. Paxton
Nuclear Technology | Volume 30 | Number 2 | August 1976 | Pages 101-137
Technical Paper | Criticality Array Data and Calculational Method / Chemical Processing | doi.org/10.13182/NT76-A31612
Articles are hosted by Taylor and Francis Online.
The first measurements with arrays of fissile metal were performed at the Los Alamos Scientific Laboratory in 1947 and the first with fissile solutions were performed at the Oak Ridge Critical Experiments Facility in 1949. Since then, there have been many other significant experiments at several U.S. laboratories including, in addition, Rocky Flats, Battelle-Pacific Northwest Laboratory, and the Lawrence Livermore Laboratory. Array tests were the primary sources of data used in developing criticality criteria for fissile-process plants, and they provided the basis for several empirical storage models that are still in use. Some of the experimental data also serve to validate Monte Carlo neutron transport calculations now used extensively by the nuclear safety engineer in the design of storage and processing facilities. The authors feel that there should be additional experimental data for further validation of calculational methods relied upon for criticality safety evaluation. The deficient areas include low-235U-enriched uranium, 233U with and without thorium, and plutonium-uranium mixtures. Also, critical data are lacking for arrays with the concrete reflectors normally found in process-plant environments , and additional experiments on concrete-reflected arrays are needed.