ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
J. F. Remark, A. B. Johnson, Jr., Harry Farrar, IV, D. G. Atteridge
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 369-377
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31601
Articles are hosted by Taylor and Francis Online.
The results of a study on the use of the decay of tritium to helium as a method of charging metals with helium were presented. Tritium was dissolved into vanadium and niobium specimens at elevated temperatures, allowed to decay to helium at room temperature, and then removed from the given specimen by hot vacuum extraction. Post-high-temperature test 3He concentrations up to 500 appm were achieved and were found to agree within ±7% with tritium decay concentration calculations. Substantial ductility decreases were found in niobium specimens tested at 1020°C and containing >130 appm helium. The ductility losses appeared to correlate with the appearance of helium on the grain boundaries. A niobium specimen containing 170 appm helium and subjected to an 1800°C anneal exhibited a substantial loss of load-carrying grain-boundary area due to grain-boundary helium bubble formation.