ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
P. Grand, K. Batchelor, J. P. Blewett, A. Goland, D. Gurinsky, J. Kukkonen, C. L. Snead, Jr.
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 327-336
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31598
Articles are hosted by Taylor and Francis Online.
Brookhaven National Laboratory has proposed the construction of an intense Li(d,n) neutron source. The neutron production process is based on the stripping reaction of energetic deuterons on a flowing liquid-lithium target. The resulting neutron fluxes of >1014 n/(cm2 sec) are well collimated in the forward direction providing ∼1 liter of experimental volume for a 100-mA deuteron beam at ∼30 MeV. The neutron energy spectrum is centered at ∼14 MeV and extends from 8 to 20 MeV at FWHM. Models to calculate the radiation damage effectiveness of this neutron spectrum were developed. These show good agreement with the radiation damage expected in a fusion reactor model (BENCH) both in terms of dpa and helium production and recoil energy probabilities. The facility consists of a drift-tube-type linear accelerator producing the 30-MeV deuteron beam. This beam comprising two components (D+ and D−ions) will be directed to the experimental area where it will be stopped on flowing liquid-lithium targets. The two different ion species will provide for the availability of two separate and independent experimental caves.