ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Dieter M. Gruen, Patricia A. Finn, Dennis L. Page
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 309-317
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31595
Articles are hosted by Taylor and Francis Online.
Impurity control in magnetically-confined thermonuclear plasmas depends in part on control of sputtered products arising from plasma particle-first wall interactions. Although sputtering of unitary targets (metals) is reasonably well understood, sputtering of binary targets (oxides) lacks a sound theoretical base. It was demonstrated that molecular species can dominate the total sputtered product from ion-bombarded aluminum oxide surfaces. The nature of the bombarding ion (Ar+ versus H+), the nature of the target surface, as well as the ion flux and fluence, determine the fraction of sputtered species appearing as aluminum atoms or Al2O and AlO molecules. The results show that the materials sensitive parameters entering collision cascade theory are the surface binding energies of the sputtered species. The surface binding energies in turn are functions of the surface composition prevailing at the time of a particular sputtering event, and are identified with the partial molar enthalpies of vaporization of the sputtered species. This approach provides the rationalization of the complex distribution of sputtered products encountered in studies of secondary ion emission from binary targets.