ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
David Dew-Hughes, Thomas S. Luhman, Masaki Suenaga
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 268-273
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31592
Articles are hosted by Taylor and Francis Online.
Aluminum has been added to the niobium core, and in various quantities to the copper-tin bronze, of composite wires that have been reacted to form Nb3Sn. Small amounts of aluminum in the bronze enhance the growth rate of Nb3Sn layers; aluminum in the core, and greater amounts in the bronze displacing some of the tin, cause a reduction in growth rate. Layer thickness is a function of (reaction time)0.67. Microprobe analysis revealed the presence of aluminum in the reacted layers only for specimens with aluminum additions to the core and in substantial quantities to the matrix. Critical current densities are primarily a function of reacted layer thickness; composition and temperature of reaction play a secondary role. Specimens in which some aluminum was successfully incorporated in thin (1- to 1.5-µm) layers of Nb3Sn showed maximum current densities, close to 109 A/m2 in transverse fields of 16 T, and 7 to 8 × 109 A/m2 at 10 T. In fields up to 8T these materials are superior to the best reported V3 Ga.