ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Paul C. S. WU
Nuclear Technology | Volume 29 | Number 2 | May 1976 | Pages 215-221
Material | doi.org/10.13182/NT76-A31581
Articles are hosted by Taylor and Francis Online.
The compatibility of Eu2O3, a potential control material for fast reactors, with the prototypic reference cladding alloy, Type 316 stainless steel, for the fast flux test facility and Clinch River Breeder Reactor Plant reactors is characterized at 1093°C. Metallographie examination of the reaction band shows that severe reaction occurred on the surface of the cladding alloy, particularly grain boundary penetration. X-ray diffraction analyses, electron microprobe analyses, and electron dispersive analysis of x rays were employed to identify the reaction product. The results show that the main reaction product is an europium silicate that contains little or no alloying components such as iron, chromium, and nickel of the Type 316 stainless steel. Consequently, it is recommended that low-silicon Type 316 stainless steel should be used for cladding purposes when Eu2O3 is used for neutron absorber in the fast reactors.