ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Osamu Yokomizo, Hiroshi Motoda, Takashi Kiguchi, Renzo Takeda
Nuclear Technology | Volume 29 | Number 2 | May 1976 | Pages 191-199
Fuel Cycle | doi.org/10.13182/NT76-A31578
Articles are hosted by Taylor and Francis Online.
A man-machine communication system has been developed for boiling water reactor (BWR) core management planning to provide a very flexible tool, which is complementary to automated optimization programs that maximize or minimize one particular performance index under certain constraints. A three-dimensional BWR simulator, which can cover a wide range of BWR operating conditions, has been developed and coupled with a graphic display serving as a main input-output controlling device. The system has been successfully applied to generate a long-term control rod programming of a BWR in which locally poisoned fuel assemblies are loaded. The time required for one cycle analysis is ∼3 h, out of which the actual computation time is only 4 min with an average of three trials of rod pattern search per exposure step. The quick response (∼5 sec) and the visualized results on the screen are very helpful in understanding the complicated characteristics of the BWR core, and it is found that this kind of tool has a very great educational effect. A similar approach is expected to be applied in other fields suck as core design and safety analysis, as well as in core management.