ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
J. E. LeSurf, G. M. Allison
Nuclear Technology | Volume 29 | Number 2 | May 1976 | Pages 160-165
Technical Paper | Material | doi.org/10.13182/NT76-A31575
Articles are hosted by Taylor and Francis Online.
Experiments in reactor loops have established relationships among ammonia decomposition rate, ammonia and hydrogen concentrations, and energy deposition in boiling water. These relationships predicted an approximate ammonia decomposition rate in the 250-MW(e) CANDU-BLW, G-1 pres-sure-tube reactor of 20 g NH3/h per MW(th), 25% less than the total loss rate measured on the reactor. When the ammonia concentration in the water phase at exit from the reactor channels is kept above 7 mg/kg, the nitrate concentration in the recirculating water is ≈0.1 mg/kg and oxygen is <10 µg/kg- Experiments in the Halden Boiling Heavy Water Reactor demonstrated that the method is applicable to pres sure-vessel reactors, but larger decomposition rates of ammonia will occur. Other factors to consider are large volumes of N2 and H2 to the off-gas system, increased radiation fields around the turbine, and reduced efficiency of ion-exchange resins.