ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
P. K. Sarkar, K. N. Kirthi, A. K. Ganguly
Nuclear Technology | Volume 28 | Number 2 | February 1976 | Pages 270-281
Technical Paper | Technique | doi.org/10.13182/NT76-A31568
Articles are hosted by Taylor and Francis Online.
The proton recoil technique using plastic scintillators is employed to measure fast-neutron spectra. Associated gamma-ray background is eliminated by using various thicknesses of thin scintillators. The method, based on different ranges of electrons and protons in the detector material, is shown to be useful for measuring neutron spectra over an extended energy region. Four scintillator thicknesses are chosen to cover the neutron energy from 1 to 18 MeV, based on practically 100% transmission of Compton-edge electrons. The pulse-height spectra from different detectors are mixed to give a pulse-height spectrum of the “combined” detector. A general purpose unfolding code is developed to unfold the combined pulse-height spectrum using a combined response matrix that results from the mixing of the calculated (Monte Carlo) response functions for the individual detectors. The neutron spectra of different (α,n) sources and of 252Cf spontaneous fission are measured and compared with published data. The technique developed, although used only for a neutron energy up to 14 MeV, can be applied in practice to higher energies.