ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
G. Karsten, G. Mühling, H. Plitz
Nuclear Technology | Volume 28 | Number 2 | February 1976 | Pages 208-215
Technical Paper | Fuel | doi.org/10.13182/NT76-A31561
Articles are hosted by Taylor and Francis Online.
The carbide fuel which will be introduced into the SNR for the first time after 1980, will be helium bonded, with a low linear heat rating and fuel density. This design appears to be the least problematic one for a medium burnup goal. The restriction to a moderate design arises to a certain extent from economical and safety reasons, but mainly can be attributed to uncertainties in extrapolation to a very high performance level. This can be demonstrated in a general discussion valid for both oxide and carbide. Due to the fact that the fuel elements of a large power plant with a peak burnup of 100 MWd/kg will undergo radiation damages, which cannot be demonstrated by experimental fuel pins in test (DFR, Rapsodie) or demonstration reactors (SNR, PFR, etc.) for the first generation, licensable maximum burnups will be in the range of 70 MWd/kg. It is impossible to perform tests outside the future large power plants with a relevant neutron dose-to-fuel burnup ratio. Therefore, in the German program a continuous development has been underway since 1968, in which separate medium burnups and neutron doses are demonstrated in test and demonstration reactors. In addition, the fuel fabrication process will be steadily improved in a pilot fabrication plant.