ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
G. Karsten, G. Mühling, H. Plitz
Nuclear Technology | Volume 28 | Number 2 | February 1976 | Pages 208-215
Technical Paper | Fuel | doi.org/10.13182/NT76-A31561
Articles are hosted by Taylor and Francis Online.
The carbide fuel which will be introduced into the SNR for the first time after 1980, will be helium bonded, with a low linear heat rating and fuel density. This design appears to be the least problematic one for a medium burnup goal. The restriction to a moderate design arises to a certain extent from economical and safety reasons, but mainly can be attributed to uncertainties in extrapolation to a very high performance level. This can be demonstrated in a general discussion valid for both oxide and carbide. Due to the fact that the fuel elements of a large power plant with a peak burnup of 100 MWd/kg will undergo radiation damages, which cannot be demonstrated by experimental fuel pins in test (DFR, Rapsodie) or demonstration reactors (SNR, PFR, etc.) for the first generation, licensable maximum burnups will be in the range of 70 MWd/kg. It is impossible to perform tests outside the future large power plants with a relevant neutron dose-to-fuel burnup ratio. Therefore, in the German program a continuous development has been underway since 1968, in which separate medium burnups and neutron doses are demonstrated in test and demonstration reactors. In addition, the fuel fabrication process will be steadily improved in a pilot fabrication plant.