ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. F. Oberbeck, Jr., K. G. Mayhan, D. R. Edwards, J. R. Lopata, J. F. Montle, D. R. Leritz
Nuclear Technology | Volume 28 | Number 2 | February 1976 | Pages 183-193
Technical Paper | Reactor | doi.org/10.13182/NT76-A31558
Articles are hosted by Taylor and Francis Online.
An apparatus was designed and constructed to test the performance of coatings under conditions of high-pressure steam and radiation that might exist under a loss-of-coolant accident (LOCA). Results from the “simultaneous” exposure of coatings to high-pressure steam and radiation are compared to results obtained from the conventional “simulated” test procedures. Coating systems were selected that had a history of performing well under simulated LOCA conditions and included zinc-based, epoxy, and phenolic primers with phenolic and modified phenolic topcoats. Coatings were exposed to 60Co radiation doses in the range of 108 to 109 rad. The study showed that the conventional simulated LOCA conditions were more severe on the coatings than those tested under the simultaneous exposure to high-pressure steam and 60Co radiation. It was concluded that coatings that satisfactorily passed the simulated LOCA tests will also pass the simultaneous LOCA tests.