ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Yuezhou Wei, Mikio Kumagai, Yoichi Takashima, Giuseppe Modolo, Reinhard Odoj
Nuclear Technology | Volume 132 | Number 3 | December 2000 | Pages 413-423
Technical Paper | Reprocessing | doi.org/10.13182/NT00-A3154
Articles are hosted by Taylor and Francis Online.
To develop an advanced partitioning process by extraction chromatography using a minimal organic solvent and compact equipment to separate minor actinides such as Am and Cm from nitrate acidic high-level waste (HLW) solution, several novel silica-based extraction resins have been prepared by impregnating organic extractants into the styrene-divinylbenzene copolymer, which is immobilized in porous silica particles (SiO2-P). The extractants include octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO), di(2-ethylhexyl)-phosphoric acid (HDEHP), and bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301). Compared to conventional polymer-matrix resins, these new types of extraction resin are characterized by rapid kinetics and significantly low pressure loss in a packed column.The results of separation experiments revealed that trivalent actinides and lanthanides can be separated from other fission products, such as Cs, Sr, and Ru in simulated HLW solution containing concentrated nitric acid by extraction chromatography using a CMPO/SiO2-P resin-packed column. Satisfactory separation between Am(III) and a macro amount of lanthanides from simulated HLW solution with pH 4 was achieved by using a newly purified Cyanex 301/SiO2-P resin. However, the Am(III) separation was very sensitive to the purity of Cyanex 301, and the improvement of its stability is an important task for practical utilization.