ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
J. T. Cole, R. E. Wood
Nuclear Technology | Volume 28 | Number 1 | January 1976 | Pages 9-22
Technical Paper | Fuels for Pulsed Reactor / Fuel | doi.org/10.13182/NT76-A31535
Articles are hosted by Taylor and Francis Online.
The Power Burst Facility (PBF) is designed to operate under steady-state conditions to 20 MW (this value may be upgraded to 30 to 40 MW in the near future), with self-limiting power bursts having initial asymptotic periods as short as 1.3 msec, and with shaped power bursts. The core and thus the fuel rods to accomplish these design requirements involved a significant development program to determine the performance capability. The limiting performance capability was determined to be the axial and diametral growth of the fuel rods. The growth behavior of the fuel rods resulted from burst tests conducted in the Transient Reactor Test Facility and Capsule Driver Core reactors. In these tests, the fuel rods were subjected to repeated bursts (10 to 200 bursts/rod) in which fuel temperatures ranged from 1600 to ∼2600°C. The minimum reactor period was 3.0 msec. The PBF fuel rods, which are 47.5 in. long and 0.75 in. in diameter, experienced maximum axial growth on the order of 0.75 in. and maximum diametral growth of ∼ 0.040 in. in these tests.