ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Joseph A. Angelo, Jr., Roy G. Post
Nuclear Technology | Volume 24 | Number 3 | December 1974 | Pages 323-330
Technical Paper | Radioactive Waste | doi.org/10.13182/NT74-A31494
Articles are hosted by Taylor and Francis Online.
The heat generated by spent fuel elements and typical processing waste from both a 1000 MW(e) reference design pressurized water reactor (PWR) and 1160 MW(e) reference design high temperature gas-cooled reactor (HTGR) were calculated for times up to 1000 years. To compensate for differences in exposure, the heat generated was expressed in terms of watts of heat generated per megawatt day of exposure. Examination of both tabular data and graphical presentations of these normalized heat generation data indicates noticeable differences in the contribution of different isotopes for each system. As anticipated, the heat generation for each fuel was greatly influenced by the transmuted isotopes 233Pa and 238Pu for the HTGR with 137Cs and 90Sr for the PWR. Data provide quantitative detailed information on the thermal power output of typical processing waste for both reactor systems for the first millennium of cooling.