ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Joseph A. Angelo, Jr., Roy G. Post
Nuclear Technology | Volume 24 | Number 3 | December 1974 | Pages 323-330
Technical Paper | Radioactive Waste | doi.org/10.13182/NT74-A31494
Articles are hosted by Taylor and Francis Online.
The heat generated by spent fuel elements and typical processing waste from both a 1000 MW(e) reference design pressurized water reactor (PWR) and 1160 MW(e) reference design high temperature gas-cooled reactor (HTGR) were calculated for times up to 1000 years. To compensate for differences in exposure, the heat generated was expressed in terms of watts of heat generated per megawatt day of exposure. Examination of both tabular data and graphical presentations of these normalized heat generation data indicates noticeable differences in the contribution of different isotopes for each system. As anticipated, the heat generation for each fuel was greatly influenced by the transmuted isotopes 233Pa and 238Pu for the HTGR with 137Cs and 90Sr for the PWR. Data provide quantitative detailed information on the thermal power output of typical processing waste for both reactor systems for the first millennium of cooling.