ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Joon-Eon Yang, Tae-Yong Sung, Youngho Jin
Nuclear Technology | Volume 132 | Number 3 | December 2000 | Pages 352-365
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3149
Articles are hosted by Taylor and Francis Online.
Up to now, the optimization of surveillance test intervals (STIs) is performed at the system level. In other words, the STI of a system is optimized considering only the conditions related to that system. For instance, the STI of an emergency diesel generator (EDG) is determined considering only the availability of an EDG and the costs related to the changed STI. However, such an approach can cause problems when the effects of each system's optimized STI are combined. That is, the core damage frequency can increase to a level that cannot be accepted by the regulatory body when the STIs optimized at the system level are all adopted together. In this paper, STIs of the systems are optimized at the plant level based on the simplified probabilistic safety assessment (PSA) model of a pressurized water reactor. The PSA model includes most of the important safety systems. It is a nonlinear and multimodal optimization problem with constraints that it optimizes the STIs of various systems based on the PSA model at the plant level. Most conventional optimization techniques have difficulties in handling such multimodal and nonlinear optimization problems. Therefore, we applied a genetic algorithm to the optimization of STIs. The genetic algorithms guarantee the global optimum and find the solution very effectively. In addition, the fault trees used in PSA have some limitations in representing the real world; i.e., in estimating the unavailability of standby systems and the effects of maintenance strategies. So, the analytical unavailability model is implemented to overcome such limits of the conventional fault tree approach. The analytical unavailability model enables us to accurately estimate the effect of a maintenance strategy on the unavailability of systems. The optimized STIs based on the conventional fault tree and the analytical unavailability model are compared.