ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. H. Fontana, R. E. MacPherson, P. A. Gnadt, L. F. Parsly, J. L. Wantland
Nuclear Technology | Volume 24 | Number 2 | November 1974 | Pages 176-200
Technical Paper | Fuel | doi.org/10.13182/NT74-A31474
Articles are hosted by Taylor and Francis Online.
Experiments were performed with a 19-rod test assembly in the fuel failure mockup sodium loop in which fuel rods were simulated by electrical cartridge heaters having the same external configuration, spacer arrangement, temperature, and heat flux as those of a typical liquid-metal fast breeder reactor (LMFBR). Temperatures were measured within the rod bundle, at the exit, and along the duct walls of the rod assembly for widely varying conditions of flow and power density and for nonuniform radial power distribution. Significant differences in temperature were measured around the duct periphery. These appeared to be linearly dependent on the power density. Flow reduction caused a decrease in these measured temperature differences. Temperatures at the exit of interior subchannels agreed with analytical predictions. Those of peripheral channels, however, indicated the existence of significant swirl flow around the rod bundle and required a separate analytical treatment. In situ radiographs indicated distortion of the rod bundle toward the duct wall at elevations where the spiral wire-wrap spacers did not touch the duct wall. At each elevation, the measured circumferential temperature profile was related to the position of the wire-wrap spacers relative to the duct wall. Higher temperatures were measured on duct walls not in contact with the spacers. The measured differences in temperature around the duct periphery were of sufficient magnitude that, if present in LMFBR cores, their effect should be considered in evaluating temperature-dependent material growth due to fast-neutron irradiation.