ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
N. J. McCormick
Nuclear Technology | Volume 24 | Number 2 | November 1974 | Pages 156-167
Technical Paper | Reactor | doi.org/10.13182/NT74-2
Articles are hosted by Taylor and Francis Online.
Gas tagging consists of the addition to nuclear reactor fuel pins of small amounts of gas having a unique isotopic composition for each assembly; when an assembly fails during subsequent irradiation, the tag gas which is released along with the fission gas, makes it possible to locate the defective assembly by a mass spectrometric analysis of the reactor cover gas. Location of the ratios of the tag gas isotopic concentrations on curved surfaces in a three-dimensional tag-ratio space enables the three ratios corresponding to failure of a single fuel assembly to be distinguished from those formed from any combination of two or more failed assemblies. Three prototypic designs have been analyzed for the fast flux test facility (FFTF) reactor, and some alternative design possibilities have been suggested. Based upon these results, current FFTF gas tag designs incorporate to a certain extent the principle of curved surfaces.