ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. R. Brodrick, P. A. Lowe, W. E. Burchill
Nuclear Technology | Volume 24 | Number 2 | November 1974 | Pages 137-148
Technical Paper | Reactor | doi.org/10.13182/NT74-A31470
Articles are hosted by Taylor and Francis Online.
Experiments have been conducted to determine the nature of the hydraulic interaction between emergency core coolant (ECC) water injected into a cold leg of a pressurized water reactor (PWR) and steam passing through that cold leg during core reflood following a loss-of-coolant accident. Measurements of flow rates, fluid temperatures, and static and differential pressures were made in 1/5 and 1/3 linear scale models of the PWR piping from the steam generator of an intact loop to the break including the pump inlet piping (loop seal), pump, cold leg, reactor vessel annulus, and broken cold leg. The principal conclusion is that the injection section performs as a jet condenser with 45-, 60-, and 75-deg injection; and condensation, but no jet pumping, occurs with 90-deg injection. The results also indicate that total condensation occurred in the cold leg in all tests wherein the water injection rate was sufficient to condense the steam assuming thermodynamic equilibrium. The data suggest that the differential pressure measured in the cold leg across the ECC injection nozzle, the water axial momentum flux, and the steam momentum flux can be combined into appropriate nondimensional groups in order to extrapolate the results to full scale. In addition, the data suggest that the influence of jet condenser stability upon the injection section pressure differential may decrease with increasing system size.