ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
R. B. Walton, E. I. Whitted, R. A. Forster
Nuclear Technology | Volume 24 | Number 1 | October 1974 | Pages 81-92
Technical Paper | Instrument | doi.org/10.13182/NT74-A31463
Articles are hosted by Taylor and Francis Online.
A method based on the detection of 0.767- and 1.001-MeV gamma rays from 234mPa has been developed for the assay of 238U in large containers of uranium waste. Detailed calibration and assay procedures were obtained for × 4- × 4-ft plywood boxes of combustible waste. The gamma rays were detected with a large NaI crystal and a line-source “standard” box was used for calibration. The calibration was extended over a wide range of box weights using Monte Carlo calculations of gamma-ray attenuation. The error in the calibration is <6% (2σ); much larger assay errors can result from heterogeneities in the waste and from the age dependence of the 238U daughters. The detection limit for a 5-min count is about 30 g 238U in a typical box of combustibles. Data generated for the box problem, together with additional Monte Carlo calculations, were used to devise a simple analytical model applicable for the assay of boxes and cylinders in a range of practical geometries. The essential feature of this model is a flux buildup factor which accounts for Compton-scattered photons.