ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
A. J. Moorhead, J. R. DiStefano, R. E. McDonald
Nuclear Technology | Volume 24 | Number 1 | October 1974 | Pages 50-63
Technical Paper | Material | doi.org/10.13182/NT74-A31460
Articles are hosted by Taylor and Francis Online.
Good corrosion resistance to alkali metals and high-temperature strength make molybdenum a candidate material for controlled thermonuclear reactor structural applications. However, fabrication problems relating to its ductile-to-brittle transition behavior, notch sensitivity, oxidation rate, and susceptibility of welds to hot cracking have limited its use in the past. Procedures have recently been developed to fabricate molybdenum components for a complex chemical processing system. Closed-end -in.-o.d. containers up to 12 in. long were back extruded using ZrO2-coated plungers and dies, and blank preheat temperatures of 1600 to 1700°C. In cooperation with a commercial vendor, we found that ductile molybdenum tubing could be prepared by careful control of process variables and removal of contamination introduced during fabrication. By using either the gas tungsten-arc or the electron-beam process, complex components were fabricated by welding. Two important factors found to minimize weld hot cracking were stress relieving and preheating of components before welding. Radial compressive tests indicated glove-box welds were superior to field welds, but there was no correlation of weld properties with cleaning procedure or strain rate.