ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
C. W. Pennington, T. S. Elleman, K. Verghese
Nuclear Technology | Volume 22 | Number 3 | June 1974 | Pages 405-415
Technical Paper | Material | doi.org/10.13182/NT74-A31424
Articles are hosted by Taylor and Francis Online.
Tritium diffusion measurements in niobium were carried out over the temperature range 400 to 950°C by direct measurements of both concentration profiles and surface release rates. The 6Li(n,α)3H reaction was used to inject tritium into the specimens and produce an initial tritium atom fraction lower than 0.01 ppm. The concentration profiles showed a high surface concentration in a surface region 1 to 2 µm thick and a nearly flat bulk diffusion profile deeper into the sample. Surface release rate measurements of tritium verified the existence of a surface trapping layer. The surface trapping was attributed to oxide films formed at room temperature. The surface release data were analyzed using diffusion models to determine tritium diffusion coefficients within the surface film and the diffusion coefficients controlling release from the bulk through the film. The tritium diffusion coefficients within the surface film are about eight to ten orders of magnitude lower than the bulk diffusion coefficients. Between 600 and 900°C, the film barrier to tritium diffusion appears to change and surface layer diffusion coefficients approach the bulk diffusion coefficients at higher temperatures.