ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. L. Smith, K. Natesan
Nuclear Technology | Volume 22 | Number 3 | June 1974 | Pages 392-404
Technical Paper | Material | doi.org/10.13182/NT74-A31423
Articles are hosted by Taylor and Francis Online.
The thermodynamic aspects of nonmetallic element (i.e., oxygen, nitrogen, and carbon) inter-actions have been analyzed for certain refractory metal-litkium systems of interest for controlled thermonuclear reactor applications. The results provide a basis for further experimental work necessary to establish the operating limitations of potential containment materials for lithium under controlled thermonuclear reactor conditions. The refractory metals niobium, vanadium, and molybdenum are considered as base metals for the containment of lithium; and titanium, zirconium, and chromium are of interest as potential alloying elements. Nonmetallic element interactions between refractory metals and lithium are analyzed in terms of the equilibrium distribution coefficients and the nonmetallic elements concentrations in lithium sufficient for compound (i.e., oxide, nitride, or carbide) formation to occur. The types of interactions, viz., embrittlement, compound formation, reduction in strength, or lithium penetration of the refractory metals, which will probably have the greatest effect on the corrosion rates and mechanical properties of niobium, vanadium, and molybdenum in a lithium environment are discussed. Additional compatibility effects produced by alloying these refractory metals with either zirconium, titanium, or chromium are discussed. The importance of a capability to monitor and control carbon and nitrogen at low concentrations in lithium is emphasized, as is the need to establish the levels at which these impurities can be maintained in a large lithium system.