ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
J. W. Allen, J. C. Robinson, N. J. Ackermann, Jr.
Nuclear Technology | Volume 22 | Number 3 | June 1974 | Pages 315-322
Technical Paper | Reactor | doi.org/10.13182/NT74-A31416
Articles are hosted by Taylor and Francis Online.
A study was made to determine the uncertainty in subcritical reactivity as inferred from inverse kinetics rod drop experiments (using the three-point method) due to the statistical uncertainty inherent in the observed count rate of the neutron sensor. The two methods employed were a classical propagation of error analysis, and an analysis of simulated repeated rod drops, with an assumption that the uncertainty in reactivity was due to the detection process itself for both techniques, To test the analysis methods, the reactivity uncertainties for various experimental rod drop data sets were computed by both methods. There was excellent agreement of the results. The propagation of error analysis may be used on three-point subcriticality measurements to provide an experimenter with an index to the statistical reliability of the inferred reactivity estimate.