ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. E. Maerker, F. J. Muckenthaler, R. L. Childs
Nuclear Technology | Volume 22 | Number 2 | May 1974 | Pages 275-297
Shielding | doi.org/10.13182/NT74-A31409
Articles are hosted by Taylor and Francis Online.
An experiment concerning deep neutron penetration in sodium was performed, and experimental results were obtained which provide a basis for verification of the accuracy of sodium cross sections to be used in transport calculations. The experiment was conducted at the Tower Shielding Facility of Oak Ridge National Laboratory and included measurements of both the neutron fluence and the neutron spectra through a large diameter sample of sodium up to 15 ft thick. Calculated results for the experiment were also compared with the experimental measurements. These results were obtained using the multigroup Monte Carlo code, MORSE, and a two-dimensional discrete ordinates code, DOT-III. One-hundred group data sets were developed from both a preliminary and the final version of the ENDF/III set (MAT-1156) for sodium for use in the calculations. Comparisons of the calculations with experiment indicate that (a) the preliminary version is slightly superior to the final version and (b) using the preliminary set, the total neutron leakage above thermal energies penetrating through 15 ft of sodium agrees to within ∼15%; and the absolute spectra penetrating through 12.5 ft of sodium, when integrated over the energy range of the measurement, agrees to within 20%. Using the final set, the corresponding comparisons are 30% and 60%.