ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. C. Hunt, C. L. Schuske
Nuclear Technology | Volume 22 | Number 2 | May 1974 | Pages 263-274
Reactor | doi.org/10.13182/NT74-A31408
Articles are hosted by Taylor and Francis Online.
Minimum critical masses are calculated for arrays of fissile metal and oxide rods or metal plates spaced in water. The composition of the fissile materials investigated were 96% 239Pu and 4% 240Pu or 93.4% 235U and 6.6% 238U. In addition, minimum critical masses were computed for arrays of plutonium and uranium metal cubes spaced in water. These studies were made to aid the criticality engineer in evaluating fabrication and storage problems involving the handling of various fissile shapes in hydrogenous media. Results were calculated in terms of array minimum critical masses as a function of the volume-to-surface ratio (V/S) of an array element. The minimum critical mass for cube arrays was found to remain constant over a wide range of V/S values, while the minimum critical mass of plate arrays always decreased with decreasing V/S rod arrays exhibited an intermediate behavior. Oxide arrays generally had smaller critical masses than corresponding metal arrays because of their smaller self-shielding factors.