ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
D. C. Hunt, C. L. Schuske
Nuclear Technology | Volume 22 | Number 2 | May 1974 | Pages 263-274
Reactor | doi.org/10.13182/NT74-A31408
Articles are hosted by Taylor and Francis Online.
Minimum critical masses are calculated for arrays of fissile metal and oxide rods or metal plates spaced in water. The composition of the fissile materials investigated were 96% 239Pu and 4% 240Pu or 93.4% 235U and 6.6% 238U. In addition, minimum critical masses were computed for arrays of plutonium and uranium metal cubes spaced in water. These studies were made to aid the criticality engineer in evaluating fabrication and storage problems involving the handling of various fissile shapes in hydrogenous media. Results were calculated in terms of array minimum critical masses as a function of the volume-to-surface ratio (V/S) of an array element. The minimum critical mass for cube arrays was found to remain constant over a wide range of V/S values, while the minimum critical mass of plate arrays always decreased with decreasing V/S rod arrays exhibited an intermediate behavior. Oxide arrays generally had smaller critical masses than corresponding metal arrays because of their smaller self-shielding factors.