ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
D. R. Vissers, J. T. Holmes, L. G. Bartholme, P. A. Nelson
Nuclear Technology | Volume 21 | Number 3 | March 1974 | Pages 235-244
Technical Paper | Instrument | doi.org/10.13182/NT74-A31394
Articles are hosted by Taylor and Francis Online.
A diffusion-type hydrogen-activity meter has been developed at Argonne National Laboratory to measure the hydrogen level of the sodium coolant in Liquid Metal Fast Breeder Reactor systems. The meter can be operated in two modes: an equilibrium mode and a dynamic mode. In the equilibrium mode, the hydrogen pressure in equilibrium with the sodium is measured by a pressure sensor and is related to the hydrogen concentration in the sodium by the Sieverts’ law constant for the hydrogen-sodium system. In the dynamic mode, the hydrogen concentration in sodium is measured by the rate of hydrogen diffusion through a nickel membrane immersed in the sodium. A vacuum of 10−6 to 10−8 Torr is drawn on the membrane at a steady rate by an ion pump, and the hydrogen activity gradient from the sodium side to the vacuum side of the membrane causes hydrogen to diffuse through the membrane. The partial pressure of hydrogen on the vacuum side, a measure of the hydrogen flux and hydrogen activity in the sodium, is determined by measuring the current to the ion pump. The meter is unique in that it does not require any form of external calibration. Data were obtained in this study of the Sieverts’ constant and hydrogen solubility for the range of 0.03 to 1 ppm. The Sieverts’ constant is slightly affected by temperature over the range 370 to 500° C and is given by The solubility of hydrogen in sodium for 0.03 to 70 ppm (including the data of others) is given by