ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
N. R. Chellew, W. E. Miller, R. W. Kessie, C. C. McPheeters, P. A. Nelson
Nuclear Technology | Volume 21 | Number 2 | February 1974 | Pages 125-132
Technical Paper | Instrument | doi.org/10.13182/NT74-A31368
Articles are hosted by Taylor and Francis Online.
Work has been completed to demonstrate the feasibility of a new cladding-failure monitoring technique based on determination of the 135I content of the primary sodium coolant of Liquid Metal Fast Breeder Reactors (LMFBRs). The method was devised to aid in detecting the penetration of fuel element cladding by sodium coolant. The method consists of isolating a small volume of primary sodium, sparging it with an inert gas to strip out dissolved gases which are discarded, further sparging the sample to strip 135mXe produced by 135I decay, and calculating the 135I content of the sodium from the 135mXe content of the second sparge. A sparging monitor was built and tested to determine the time required to sparge dissolved radioxenon (133Xe) from molten sodium. This time varied from ∼1 to 1.5 min, depending on experimental conditions. For the calculated background level of 135I in the primary sodium of Experimental Breeder Reactor II, a counting time of ∼2 min would be required to determine the amount of 135mXe removed by the second sparging to a 1σ counting precision of ±4%. A shorter counting time would be required for higher 135mXe levels that would occur during fuel failure. A system with automatic controls was designed for monitoring 135I in the primary sodium of an LMFBR.