ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
M. F. Kennedy, A. B. Reynolds
Nuclear Technology | Volume 20 | Number 3 | December 1973 | Pages 149-160
Technical Paper | Reactor | doi.org/10.13182/NT73-A31354
Articles are hosted by Taylor and Francis Online.
Calculational models were developed for estimating the transport of sodium vapor and the relatively large (≥10-µm) fuel particles resulting from a fuel-coolant interaction to the secondary containment in an LMFBR core disruptive accident. Following the formation of a large sodium vapor bubble resulting from a fuel-coolant interaction, a potential sequence of events was analyzed. This analysis covers bubble condensation, bubble rise time, aerosol fallout during the bubble rise, gas flow rate through the cover, cover-gas escape during the bubble rise, bubble and cover-gas mixing, and aerosol escape to the secondary containment. Two parametric calculations were made for specified accident conditions for a 1000-MW(e) LMFBR conceptual design. The bubble did not condense in this analysis. Results of the analysis indicated that 2 and 10% of the fuel that took part in the fuel-coolant interaction eventually reached the secondary containment for the two assumed flow areas through the cover, i.e., 0.1 and 1.0 ft2, respectively.