ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. F. Kennedy, A. B. Reynolds
Nuclear Technology | Volume 20 | Number 3 | December 1973 | Pages 149-160
Technical Paper | Reactor | doi.org/10.13182/NT73-A31354
Articles are hosted by Taylor and Francis Online.
Calculational models were developed for estimating the transport of sodium vapor and the relatively large (≥10-µm) fuel particles resulting from a fuel-coolant interaction to the secondary containment in an LMFBR core disruptive accident. Following the formation of a large sodium vapor bubble resulting from a fuel-coolant interaction, a potential sequence of events was analyzed. This analysis covers bubble condensation, bubble rise time, aerosol fallout during the bubble rise, gas flow rate through the cover, cover-gas escape during the bubble rise, bubble and cover-gas mixing, and aerosol escape to the secondary containment. Two parametric calculations were made for specified accident conditions for a 1000-MW(e) LMFBR conceptual design. The bubble did not condense in this analysis. Results of the analysis indicated that 2 and 10% of the fuel that took part in the fuel-coolant interaction eventually reached the secondary containment for the two assumed flow areas through the cover, i.e., 0.1 and 1.0 ft2, respectively.