ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Richard B. Stout, Alan H. Robinson
Nuclear Technology | Volume 20 | Number 2 | November 1973 | Pages 86-102
Technical Paper | Fuel Cycle | doi.org/10.13182/NT73-A31344
Articles are hosted by Taylor and Francis Online.
An iterative approach was adopted as the most practical method to search for an optimum fuel loading pattern in pressurized water reactors. A minimum peak-to-average power ratio was chosen as the objective characteristic of the optimum loading. A computer program SHUFLE employs a set of logical shuffling statements which utilizes the radial power shape and reactivity positioning of each iteration to predict a shuffle for the succeeding iteration. Independent logic is employed for different sections of the core and for fuel of relatively high and low reactivity. A two-dimensional simulated two-group coarse-mesh diffusion theory model is utilized to calculate the two-dimensional power distribution after each shuffle. The shuffling logic employed in SHUFLE was demonstrated adequate to predict acceptable loading patterns for initial, equilibrium, and nonequilibrium pressurized water reactor cores.