ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
N. Levitz, D. E. Grosvenor, S. Vogler, F. G. Teats, N. Quattropani
Nuclear Technology | Volume 20 | Number 1 | October 1973 | Pages 60-63
Technical Note | Chemical Processing | doi.org/10.13182/NT73-A31334
Articles are hosted by Taylor and Francis Online.
A continuous fluidized-bed process for the conversion of uranium/plutonium nitrates to oxides is under development to facilitate the recycle of plutonium in the nuclear fuel cycle. The basic process consists of two steps, each performed in a separate fluid-bed reactor: (a) codenitration at 375°C of uranyl nitrate-plutonium nitrate solutions to a UO3-PuO2 powder form, and (b) reduction of the UO3-PuO2 with hydrogen at 600°C to form UO2-PuO2. Pilot-plant denitration studies with uranyl nitrate-plutonium nitrate solutions containing uranium/plutonium ratios of 50 and 4, and plutonium nitrate solution alone are described, as well as reduction of UO3-PuO2 powder. Examination of the UO3-PuO2 denitration product by autoradiographic and electron microprobe techniques showed that the PuO2 was distributed in the UO3 matrix with a high degree of homogeneity. The conversion process appears to be applicable over the entire range of uranium-plutonium concentrations and for plutonium nitrate alone. The suitability of this product for the fabrication of fuel pellets is being studied in cooperation with nuclear fuel manufacturers.