ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
L. D. Philipp, N. C. Hoitink, W. G. Spear, M. R. Wood
Nuclear Technology | Volume 20 | Number 1 | October 1973 | Pages 51-59
Technical Paper | Instrument | doi.org/10.13182/NT73-A31333
Articles are hosted by Taylor and Francis Online.
Electron drift velocity, a function of gas composition, electric field, and pressure, represents the most important design parameter for optimization of fission-counter collection time. References in the literature provide a significant source of information on drift velocities for various gases, but the information does not extend to sufficiently high electric field/pressure (E/p) ratios for use with the high-sensitivity fission counters under consideration. The data obtained for this investigation and reported here extend the drift-velocity data for argon-nitrogen mixtures to E/p regions useful for present design considerations, and at the same time compare detector performance in a high gamma field (106 R/h) with the various gas mixtures employed. Six combinations of argon-nitrogen ranging from 1 to 15% nitrogen were included in the tests. Although several other gas mixtures, such as argon-methane and argon-CO2, provide faster drift velocities, only argon-nitrogen has proven stable at the high neutron exposure levels anticipated for the Fast Flux Test Facility (1018 n/cm2). Performance comparisons show that for 800-Vdc operation the neutron counting sensitivity for Ar - 10% N2 exceeds that for Ar - 1% N2 (the fill gas most commonly used) by over a factor of 2. Corresponding collection times decreased from 160 nsec for the Ar - 1% N2 mixture to 80 nsec for the Ar - 10% N2 combination. For specific applications, it may be required to limit the voltage to <800 Vdc. The curves provide information to permit selection of the best gas mixture for a given bias voltage requirement.