ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
C. L. Schuske, S. J. Altschuler
Nuclear Technology | Volume 19 | Number 2 | August 1973 | Pages 84-95
Technical Paper | Chemical Processing | doi.org/10.13182/NT73-A31323
Articles are hosted by Taylor and Francis Online.
A model has been developed for calculating critically safe storage arrays of cylindrical vessels containing water/fissile oxide mixtures of PuO2 (96% 239Pu and 4% 240Pu) or UO2 (93.4% 235U and 6.6% 238U). It was assumed that these arrays were in air surrounded by a 12-in.-thick concrete vault. This model uses the concepts of surface density and unit surface-to-volume ratio to define safe array parameters. The model handles fissile densities ranging from that of the theoretical crystal down to ∼1kg/liter and containers whose shapes range from 300-cm-high thin cylinders to flat slab-shaped containers. Correction factors for dry oxide storage at various densities have also been developed for the cases where water can be prevented from entering the oxide containers. A considerably greater weight of oxide can be stored when water can be precluded. The effect of several inches of water on the concrete floor lowers keff ∼3%. (The units are assumed to be at least 12 in. above the floor.)