ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Charles D. Bowman
Nuclear Technology | Volume 132 | Number 1 | October 2000 | Pages 66-93
Technical Paper | Accelerator Applications | doi.org/10.13182/NT00-1
Articles are hosted by Taylor and Francis Online.
An accelerator-driven thermal-spectrum liquid-fueled system is described for transmutation of spent fuel from commercial power reactors. The primary purpose of the system is to destroy the weapons-useful plutonium and neptunium in commercial spent fuel and thereby eliminate international concerns about the recovery of such material from geologic repositories for nuclear weapons purposes. The system also extracts ~80% of the fission energy available in the plutonium, and this energy is converted into electricity and sold into the commercial grid to pay nearly all of the capital and operating costs. The 20% of the material not destroyed is converted to an isotopic composition of no interest from a weapons perspective. These functions are accomplished without recycling or separation of a stream of pure plutonium. With technological development enabling widespread deployment in the 2015 to 2025 time frame, the world's inventory of nuclear weapons useful material could be reduced by a factor of 100 or more by the middle of the next century. This system does not eliminate the need for geologic storage of the remnant waste since the 20% remnant must be stored somewhere for tens of thousands of years, but it eliminates the possibility of mining geologic repositories for weapons material, it enables the recovery of nearly all of the energy carried by the plutonium, it reduces the amount of actinides that must be permanently stored by a factor of 5, and it enhances the repository's performance by reducing the load of long-lived radioactive actinide. Furthermore, since weapons material is eliminated, it transforms the ultimate disposition of the spent-fuel waste remnant from a subject of profound international concern to one in which nations need have little interest in how others solve this problem. Most of the concerns about the waste legacy from continued light water reactor deployment would be made moot by the advent of this waste destruction technology.