ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
R. C. Lloyd, E. D. Clayton, L. E. Hansen, S. R. Bierman
Nuclear Technology | Volume 18 | Number 3 | June 1973 | Pages 225-230
Technical Paper | Chemical Processing | doi.org/10.13182/NT73-A31297
Articles are hosted by Taylor and Francis Online.
A series of criticality experiments was performed on plutonium nitrate solutions in slab geometry. The solutions contained plutonium at concentrations ranging between 58 and 412 g Pu/liter for material with three different isotopic contents: 4.6, 18.4, and 23.2 wt% 240Pu. Acid molarities varied from 1.6 to 5.0. The experiments were performed with a variable thickness slab-type vessel of 42-in. height and width, whose thickness could be adjusted throughout a range of 3 to 9 in. The experimental vessel was used with and without a water reflector and also with a 1-in.-thick Plexiglas reflector. The critical experiment data from the finite slabs were corrected to yield values of critical thicknesses for one-dimensional infinite slabs, i.e., slabs of finite thickness but of infinite height and width. Analytical corrections, based on experimental data, were subsequently used to correct the critical infinite slab thicknesses for materials extraneous to the plutonium solutions, such as the effect of the stainless-steel vessel walls and room return neutrons. The analysis provided values for clean one-dimensional assemblies that were then used as an integral check of calculational methods using cross sections from the ENDF/B-II data file. The computed values of keff for these “clean assemblies” ranged between 0.988 and 1.040; the values increased somewhat with increasing concentration.