ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Grover Tuck, Harold E. Clark, Donald L. Alvarez
Nuclear Technology | Volume 18 | Number 3 | June 1973 | Pages 216-224
Technical Paper | Chemical Processing | doi.org/10.13182/NT73-A31296
Articles are hosted by Taylor and Francis Online.
Critical parameters are given for a series of experiments on uranium metal spheres immersed in uranyl nitrate solution. The uranium in both regions is enriched to 93.2% 235U. In some configurations, the two fissile regions were separated by -thick spherical shells of mild steel or boron stainless steel. These experiments were part of an investigation of the uncoupling effects of mild steel and boron stainless steel The term “uncoupling” as used throughout this text refers to the changes in critical mass, stated in terms of percent, due to surrounding the metal region with these nonfissile shells. Two tank sizes were used; the large tank was 38.4 cm in diameter × 57.2 cm in height, and the small tank was 26.5 cm in diameter × 38.4 cm in height. Solution concentrations used were 51.76, 54.61, 107.34, 110.27, and 448.91 g U/liter. Neutron reproduction factors were calculated for several of the experimental conditions using the KENO code. These values and their standard deviations ranged from 0.965 ± 0.013 to 1.011 ± 0.009, with uncertainties quoted at a one sigma confidence level. Neutron reproduction factors were also calculated for cases where the metal spheres were symmetrically centered in the uranyl nitrate solution. These centered cases were used to determine the uncoupling effects of the mild steel and boron stainless steel. For the 38.4-cm-diam tank, the uncoupling, expressed as a mass increase of the uranium sphere, varied from 10.1 to 65.4%. For the 26.5-cm-diam tank, the mass increases varied from 7.3 to 76.7%. The uncoupling percentage is a function of the solution concentration and the type of uncoupling material used.