ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
C. L. Brown, L. C. Davenport, D. R Oden
Nuclear Technology | Volume 18 | Number 2 | May 1973 | Pages 109-114
Technical Paper | A Review of Plutonium Utilization in Thermal Reactors / Reactor | doi.org/10.13182/NT73-A31282
Articles are hosted by Taylor and Francis Online.
The nuclear criticality safety aspects of light water reactor (Pu,U)O2 fuel fabrication have been reviewed. Conclusions are as follows: 1. Criticality safety limitations will present a major design challenge in those parts of the plant where plutonium and plutonium-uranium solutions are processed. In particular, the requirement of large vessel volume to achieve homogeneous plutonium-uranium blending will be complicated by the restrictive criticality safety limits necessary on vessel dimensions. Special vessel design, such as annular geometry, and fixed nuclear poisons are possible innovations to overcome this problem. 2. Once the PuO2 and UO2 are mixed and in dry powder form, plant throughput should proceed at a reasonable rate and criticality safety will not necessarily limit operations. 3. In dry operations, radiation protection limitations are likely to be more restrictive than criticality safety limitations. In other words, criticality safety limits will not be determining factors for process control, since the fuel will be well confined in glove boxes and handled in relatively small batches for radiation protection considerations. 4. The fact that plutonium recycle fuel will be fabricated in sealed glove boxes will make it more feasible to base criticality safety on limits for unmoderated fuel, in certain parts of the plant, than is now possible in UO2 fuel fabrication plants. 5. The basic critical masses and dimensions applicable to the fabrication of plutonium recycle fuel are expected to be only slightly more restrictive than those for light water reactor UO2 fuel.