ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
D. W. Brite
Nuclear Technology | Volume 18 | Number 2 | May 1973 | Pages 87-96
Technical Paper | A Review of Plutonium Utilization in Thermal Reactors / Reactor | doi.org/10.13182/NT73-A31280
Articles are hosted by Taylor and Francis Online.
The U.S. Atomic Energy Commission is developing general design criteria for plutonium processing and fabrication plants. In the meantime, an Atomic Energy Commission review of proposed sites and design plans for such facilities is required prior to the start of construction. The design of most new plutonium facilities today anticipates a reduction in the maximum permissible personnel radiation exposure from the present 5 rem/yr to 1 rem/yr. Plutonium-uranium mixed-oxide fuels for thermal reactors are most frequently prepared from mechanically blended PuO2 and UO2 powders. Fuel pellets, fabricated by dry powder preparations, cold pressing, sintering, and grinding to size, are encapsulated in Zircaloy tubes, which are then assembled into bundles as required for each reactor. Alternate mixed-oxide fuel fabrication techniques include preparation of coprecipitated UO2-PuO2 powders, binder addition by a wet process, hot pressing, and the use of packed-particle rather than pelletized fuels. Packed-particle fuel materials that have been utilized were prepared by a high energy pneumatic impaction process, a sol-gel process, or by cold pressing and sintering. Such fuel materials are packed in rods by either a vibratory compaction or a swaging process. A quality assurance program is required which covers all planned actions necessary to provide the degree of confidence needed to ensure that the fuels meet or exceed the requirements of design specifications.