ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Detlef Filges, Ralf-Dieter Neef, Hartwig Schaal
Nuclear Technology | Volume 132 | Number 1 | October 2000 | Pages 30-48
Technical Paper | Accelerator Applications | doi.org/10.13182/NT00-A3127
Articles are hosted by Taylor and Francis Online.
The European Spallation Neutron Source (ESS) delivers high-intensity pulsed particle beams with 5-MW average beam power at 1.3-GeV incident proton energy. This causes sophisticated demands on material and geometry choices and a very careful optimization of the whole target system. Therefore, complex and detailed particle transport models and computer code systems have been developed and used to study the nuclear assessment of the ESS target system. The purpose here is to describe the methods of calculation mainly based on the Monte Carlo code to show the performance of the ESS target station. The interesting results of the simulations of the mercury target system are as follows: time-dependent neutron flux densities, energy deposition and heating, radioactivity and afterheat, materials damage by radiation, and high-energy source shielding. The results are discussed in great detail. The validity of codes and models, further requirements to improve the methods of calculation, and the status of running and planned experiments are given also.